關(guān)于拋物柱面方程的一般表達(dá)式,拋物柱面方程這個(gè)問(wèn)題很多朋友還不知道,今天小六來(lái)為大家解答以上的問(wèn)題,現(xiàn)在讓我們一起來(lái)看看吧!
1、二次曲面一般形式為 ax^2+by^2+c z^2+2d xy+2eyz+2fxz+gx+hy+iz+j=0考慮觀測(cè)者在無(wú)窮遠(yuǎn)處觀測(cè),方程的一次項(xiàng)和常數(shù)項(xiàng)都是小量,因此形狀取決于二次式ax^2+by^2+c z^2+2d xy+2eyz+2fxz=0寫為(x,y,z)A(x,y,z)^T=0,A 為矩陣 a d f d b e f e c用相似變換將其對(duì)角化得到S s1 0 0 0 s2 0 0 0 s3對(duì)應(yīng)方程(z1,z2,z3)S(z1,z2,z3)^T=0分如下幾種情況s1,s2,s3 都是正或都是負(fù)的,z=0,對(duì)應(yīng)在無(wú)窮遠(yuǎn)處收縮為0的點(diǎn),正是橢球在無(wú)窮遠(yuǎn)處的情形;s1,s2,s3 兩正一負(fù)或兩負(fù)一正,對(duì)應(yīng)無(wú)窮遠(yuǎn)處錐形,正是雙曲面在無(wú)窮遠(yuǎn)處的情形;s1,s2,s3 兩正一零或兩負(fù)一零,對(duì)應(yīng)無(wú)窮遠(yuǎn)處收縮為線,正是拋物面在無(wú)窮遠(yuǎn)處的情形。
2、不過(guò)嚴(yán)格的拋物面對(duì)應(yīng)的兩個(gè)非零s還要相等;s1,s2,s3 一正一負(fù)一零,對(duì)應(yīng)無(wú)窮遠(yuǎn)處收縮為兩個(gè)面,正是雙曲柱面在無(wú)窮遠(yuǎn)處的情形;s1,s2,s3 兩零,對(duì)應(yīng)無(wú)窮遠(yuǎn)處收縮為細(xì)線形,正是橢圓柱面在無(wú)窮遠(yuǎn)處的情形。
3、不過(guò)嚴(yán)格的圓面對(duì)應(yīng)的兩個(gè)非零s還要相等;s1,s2,s3 兩零,對(duì)應(yīng)無(wú)窮遠(yuǎn)處收縮為一個(gè)線,正是拋物面在無(wú)窮遠(yuǎn)處的情形;。
本文分享完畢,希望對(duì)大家有所幫助。
標(biāo)簽:
免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請(qǐng)聯(lián)系刪除!